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Purpose: Our purpose was to study strategy use during
nonlinguistic category learning in aphasia.
Method: Twelve control participants without aphasia
and 53 participants with aphasia (PWA) completed a
computerized feedback-based category learning task
consisting of training and testing phases. Accuracy rates
of categorization in testing phases were calculated. To
evaluate strategy use, strategy analyses were conducted
over training and testing phases. Participant data were
compared with model data that simulated complex
multi-cue, single feature, and random pattern strategies.
Learning success and strategy use were evaluated
within the context of standardized cognitive–linguistic
assessments.
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Results: Categorization accuracy was higher among control
participants than among PWA. The majority of control
participants implemented suboptimal or optimal multi-cue
and single-feature strategies by testing phases of the
experiment. In contrast, a large subgroup of PWA implemented
random patterns, or no strategy, during both training and
testing phases of the experiment.
Conclusions: Person-to-person variability arises not only in
category learning ability but also in the strategies implemented
to complete category learning tasks. PWA less frequently
developed effective strategies during category learning tasks
than control participants. Certain PWA may have impairments
of strategy development or feedback processing not captured
by language and currently probed cognitive abilities.
For decades, cognitive neuroscientists have explored
probabilistic category learning tasks to better un-
derstand learning systems in healthy and clinical

populations (for review, see Ashby & Maddox, 2005). Cate-
gorization allows us to organize stimuli and integrate in-
formation on the basis of commonalities. This is a critical
skill that underlies our ability to rapidly recognize and assign
meaning to experiences in the context of infinite environ-
mental stimuli and scenarios. Humans must constantly, and
fluidly, classify novel items into discrete categories such as
large or small, friend or foe (for review, see Maddox, 2002;
Seger & Miller, 2010), with some theories proposing that
this ability to categorize at least partially underlies our abil-
ity to form concepts (Palmer, 2002; Waxman & Gelman,
2009; Zentall, Galizio, & Critchfield, 2002). Research has
examined many types of category learning—which include
category tasks learned through logic that can be prescribed
as well as category tasks requiring discovery—for which
learning does not rely on the acquisition of rules that can
be verbalized (Ashby & Maddox, 2011; Palmer, 2002),
such as information integration tasks, prototype-distortion
tasks, and unstructured categories (for review, see Ashby
& Maddox, 2011; Seger & Miller 2010).

The category learning literature is vast and is impor-
tant to consider in a research program dedicated to aphasia
—the loss of language most frequently associated with
stroke, traumatic brain injury, or progressive neurological
disease—particularly because research has shown that
neurological damage affects categorization and category
learning ability. Individuals with Parkinson’s disease (PD)
and individuals with amnesia show facilitated learning
under certain task conditions over others (Knowlton,
Mangels, & Squire, 1996; Knowlton, Squire, & Gluck,
1994; Shohamy, Myers, Grossman, et al., 2004; Swainson
et al., 2000). When compared with control participants,
these populations also show differences in the strategies
used to approach learning.

Questions about abstract category learning have
been sparse in the literature on aphasia, as, until recently,
the focus in aphasia was specifically on language and its
organization, formulation, and retrieval. Most of the research
on learning in aphasia focuses on novel word learning
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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(Freedman & Martin, 2001; Grossman & Carey, 1987;
Kelly & Armstrong, 2009; Tuomiranta et al., 2011), word–
picture/word–object association learning (Breitenstein,
Kamping, Jansen, Schomacher, & Knecht, 2004; Glass,
Gazzaniga, & Premack, 1973; Marshall, Neuburger, &
Phillips, 1992), or artificial grammar learning (Christiansen,
Louise Kelly, Shillcock, & Greenfield, 2010; Floel, de Vries,
Scholz, Breitenstein, & Johansen-Berg, 2009). These studies
are critically important, as they have helped us to understand
that participants with aphasia (PWA) are capable of new
verbal learning. In addition, studies have confirmed a rela-
tionship between behaviors observed during novel word
learning and domain specific deficits in aphasia measured
through standardized assessments. What remains unan-
swered and nondissociable in these studies, however, is an
understanding of learning in aphasia that is not so heavily
laden with language. We are increasingly understanding
that language cannot be dissociated from nonlinguistic fac-
tors such as attention and executive control (see Cahana-
Amitay & Albert, 2014). Nonlinguistic learning remains an
important and underexplored topic in aphasia.

Recently, in a first exploration into nonlinguistic
probabilistic category learning in aphasia, Vallila-Rohter
and Kiran (2013) probed the learning ability of PWA using
a prototype-learning task. The task involved multidimen-
sional abstract animal stimuli with multiple features.
Two categories were established along a continuum, and
category membership was determined by the percentage of
feature overlap with each of two prototypes. Successful
learning corresponded with categorization scores that matched
the percentage of feature overlap with each prototype. In
this study, only 11 out of 19 PWA were found to successfully
learn categories. In contrast, all healthy age-matched con-
trol participants learned to correctly categorize animals.
Performance by PWA was not predicted by severity of
aphasia, further suggesting that language and learning net-
works may be differentially affected by aphasia-inducing
strokes. These results were the first indication that impair-
ments in the categorical learning of abstract feature repre-
sentations may often occur in stroke aphasia.

Because some PWA were able to learn successfully,
whereas others were not, the next step is to look beyond
overall accuracy rates to the process of learning. Can an un-
derstanding of the strategies engaged to approach these
tasks shed light on different presentations of learning suc-
cess in aphasia? Prior research suggests that it can, as strat-
egy analyses have provided insights beyond those brought
about through accuracy analyses alone.

Gluck, Shohamy, and Myers (2002) pioneered this
type of strategy analysis work, exploring how participants
went about performing the weather prediction task (WPT;
Knowlton et al., 1994). The WPT is a protocol in which
participants gradually learn to predict one of two outcomes
—sunshine or rainy weather—on the basis of a presentation
of cards. Stimuli for the WPT are four unique stimulus
cards composed of geometric shapes. On each trial, one to
three cards are presented, and participants are instructed to
guess whether each card combination predicts sunshine or
1196 Journal of Speech, Language, and Hearing Research • Vol. 58 •
rainy weather. Individual cards are probabilistically associ-
ated with one outcome or another, such that successful
learning of the task is achieved through gradual, trial-by-
trial learning influenced by the statistical nature of
weather–card associations.

In the first phase of their study, Gluck et al. (2002)
collected qualitative data in the form of open-ended and
multiple-choice questions aimed at identifying how partici-
pants approached learning. Researchers noted that consis-
tent patterns arose among responses and termed these
strategies: one-cue strategies, multi-cue strategies, and sin-
gleton strategies. One-cue learners developed rules on the
basis of the presence or absence of single cards (e.g., pre-
dicting rain whenever the triangle cue card appeared with
or without other cue cards). Multi-cue learners reported
attending to a combination of cards (e.g., predicting rain
whenever a triangle card appeared with a diamond card).
Singleton learners devised response rules only when single
cards appeared (e.g., predicting rain when the triangle cue
card appeared alone), guessing on remaining trials. Re-
searchers used these qualitative data to establish quantita-
tive models predicting the response patterns that would
arise when implementing each approach.

Models were based on the assumption that to success-
fully learn probabilistic learning tasks, participants must
produce a fairly constant pattern of responses that is resis-
tant to negative feedback, because feedback on an individual
trial is not always reliable (i.e., a pattern will be reinforced
as belonging to one category on 80% of trials and as be-
longing to the opposite category on 20% of trials). Learning
of these tasks is experience-based and depends on accrued
information over multiple trials. Although the researchers
acknowledged that the approaches described and modeled
in the study do not suffice to characterize all of the possible
strategies used when completing this task, the majority of
participant response profiles averaged over 200 trials fit
ideal data. Follow-up analyses of responses over 50 trial
blocks also provided good fits to model data. An evaluation
of the fit between results and modeled strategies, therefore,
establishes a metric of how learning is carried out, and it
provides insights into participants’ approaches to the task
that extend beyond overall accuracy scores.

The findings established by Gluck et al. (2002) set the
stage for further examinations into strategy use in individ-
uals with PD or amnesia that are relevant when considering
aphasia. Meeter, Myers, Shohamy, Hopkins, and Gluck
(2006) conducted strategy analyses over data collected from
healthy control participants and participants with amnesia
completing probabilistic learning tasks. In this study, a final
“strategy”—the random pattern (RP), or no strategy—was
introduced. The random strategy models behavior closest
to chance performance. When introducing this model,
Meeter et al. noted that behavior that most closely matches
a random strategy could correspond to RPs, switching
strategies, or probabilistic rules not captured by other
models. The inclusion of a random strategy into analyses
was beneficial, as it helps reduce the number of falsely iden-
tified one-cue and multi-cue strategy fits.
1195–1209 • August 2015



Meeter et al. (2006) observed a switch from simple to
complex strategies in control participants—a progression
that suggests an ability to integrate information and feedback
over the course of learning. In comparison, most patients
with amnesia implemented no strategy during learning. In-
termittent strategy use and strategy switches were observed
among patient data, but these were not constructive, often
involving switching from simple or intermediate strategies to
less optimal strategies or no strategy and back. Such patterns
led to poor overall learning and are consistent with memory
impairments and a difficulty tracking feedback or recalling
attempted strategies. The inclusion of a strategy analysis in
this study shed light on the processes that led to different ac-
curacy rates between groups in later phases of classification.

Similarly, Shohamy, Myers, Grossman, et al. (2004)
examined strategy use on the WPT, this time comparing the
performance of healthy individuals with that of patients
with PD. Again, control participants were observed to use
multi-cue strategies over time. Patients with PD showed
improved accuracy over 3 days of data collection; however,
strategies remained simple and focused on single cues.
Findings highlight the importance of analyses at the strat-
egy level because patients with PD showed overall accuracy
scores comparable with those of control participants by
the final day of testing but continued to approach tasks in a
distinct manner.

As mentioned above, in aphasia very little remains
known about nonlinguistic learning. However, many of the
factors thought to contribute to reduced learning of proba-
bilistic tasks in PD and amnesia (e.g., reduced memory
ability, reduced attention, executive control, and reduced
feedback ability) have been identified as areas of weakness
for PWA as well (Caspari, Parkinson, LaPointe, & Katz,
1998; Christensen & Wright, 2010; Glosser & Goodglass,
1990; Kalbe, Reinhold, Brand, Markowitsch, & Kessler,
2005; Murray, 2012; Murray, Ramage, & Hopper, 2001;
Seniow, Litwin, & Lesniak, 2009). In an interesting study
comparing errorless and errorful anomia treatment methods,
Fillingham, Sage, and Lambon Ralph (2006) found that,
irrespective of treatment type, therapy outcomes were sig-
nificantly correlated with measures of recognition memory,
executive function, and monitoring skills but not with
language measures. Cognitive skills that support learning,
feedback processing, and integration were critical to ther-
apy, independent of language measures. PWA may vary in
their ability to monitor feedback and effectively develop
strategies through the course of learning—an important con-
sideration for therapy.

As a first step toward answering these questions, we
explore strategy use on a probabilistic category learning
task that, like the WPT, engages participants in experienced-
based gradual learning. Through exposure, participants learn
to group perceptual stimuli on the basis of shared physical
features and/or similarly paired outcomes. First, we examine
the overall learning success of control participants without
aphasia and PWA as they complete a nonlinguistic category
learning task. Second, we examine the strategies implemented
by both groups in training and testing phases of our task
to probe strategy evolution. We apply an adaptation of
Gluck et al.’s (2002) and Meeter et al.’s (2006) mathematical
models to determine whether individuals use an optimal
multi-cue (OMC) strategy, various single feature (SF) strat-
egies, or an RP during classification and training phases.

On the basis of results obtained in Vallila-Rohter and
Kiran’s (2013) study, we expect control participants to
learn categories successfully, whereas we expect PWA to
present variable success in learning. Prior research suggests
that severity of aphasia will not predict which PWA suc-
cessfully learn categories. We hypothesize that, like individ-
uals with PD and individuals with amnesia, PWA will
utilize complex strategies less frequently than healthy con-
trol participants, predominantly engaging SF strategies.
Deficits of attention, executive function, and memory pres-
ent in aphasia are likely to affect the rapid development
of complex multi-cue strategies. PWA do not have the dense
memory impairments observed in amnesia, so RP strategy
profiles are not expected.
Method
Participants

Fifty-three English speaking PWA (30 men, 23 women)
—who previously had a left hemisphere stroke or hemorrhage
and who ranged in age from 28.4 to 87 years (M = 60.8,
SD = 12.8)—participated in the study. PWA were tested
outside of the acute period, at least 6 months after the onset
of their stroke (M = 51.3, SD = 49.6). All PWA were pre-
morbidly right handed. Medical records were obtained
to confirm the location of the cerebrovascular accident and
are presented in Table 1. We were not able to obtain records
for eight PWA. PWA completed an average of 15.4 years
of education (SD = 3.1). Severity of aphasia, as determined
by aphasia quotients (AQs) computed from the Western
Aphasia Battery (WAB; Kertesz, 1982), ranged from 10.2
to 100 (M = 72.8, SD = 23.9). Though some of these AQs
are not traditionally classified as aphasic, high-level in-
dividuals were included in the current study, as we are
interested in comprehensively representing the disorder
by including a wide variety of patients. We have mea-
sures on other linguistic tests outside the scope of this arti-
cle that demonstrate the presence of aphasia (see online
supplemental materials, Supplemental Table 1). As deter-
mined by the WAB, aphasia types included global aphasia,
Broca’s aphasia, Wernicke’s aphasia, conduction aphasia,
transcortical motor aphasia, and anomic aphasia. The
cognitive–linguistic abilities of PWA were tested using the
Cognitive Linguistic Quick Test (CLQT; Helm-Estabrooks,
2001). Three PWA dropped out of the study prior to fully
completing our diagnostic battery and, therefore, are missing
measures of cognitive–linguistic ability (one participant) or
are not assigned an aphasia type (two participants).

A group of 12 English speaking control participants
without aphasia (four men) completed the experiment.
The age of these individuals ranged from 32.9 to 72.6 years
(M = 61.3, SD = 10.1; see Table 2). Control participants
Vallila-Rohter & Kiran: Strategy Use in Aphasia 1197



Table 1. Characteristics of participants with aphasia (PWA).

Participant Gender
Age

(years)
Education
(years) MPO Aphasia type AQ Attn Mem Exec VS Lesion information

PWA1 M 52 11 260 Anomic 61 54 96 21 52 L MCA CVA
PWA2 M 53 16 48 Wernicke’s 58 125 108 11 57
PWA3 F 63 16 65 Anomic 69 194 139 19 92 L MCA with BG involvement
PWA4 M 61 13 6 Anomic 91 167 145 15 72 L MCA CVA
PWA5 M 46 16 86 Broca’s 73 195 118 30 99 L MCA CVA
PWA6 F 57 16 68 Anomic 80 132 118 7 43 L MCA with BG involvement
PWA7 M 72 18 15 Wernicke’s 77 173 132 21 83 L MCA CVA
PWA8 M 61 16 45 68 199 157 22 94 L MCA CVA
PWA9 M 68 19 13 Anomic 74 142 136 19 73 L MCA CVA
PWA10 M 76 3 15 142 102 8 55 L MCA CVA
PWA11 M 53 16 24 Anomic 91 72 113 23 56 L PCA CVA
PWA12 F 73 19 136 Anomic 91 46 142 16 32 L MCA CVA
PWA13 M 66 12 15 Anomic 97 200 142 29 101 L MCA CVA
PWA14 F 74 12 14 Transcortical motor 51 38 113 14 38 L ACA/MCA CVA
PWA15 F 55 12 10 Anomic 85 192 152 26 88 L MCA with BG involvement
PWA16 M 75 16 17 Transcortical motor 83 144 114 10 62 L ACA/posterior MCA CVA
PWA17 F 28 18 23 Conduction 87 202 156 30 100 L MCA CVA
PWA18 F 59 16 48 Conduction or anomic 74 131 113 6 52
PWA19 M 50 12 32 Anomic 86 186 138 26 93 L MCA with BG involvement
PWA20 M 58 16 29 Wernicke’s/conduction 60 49 105 12 38
PWA21 M 82 12 9 Conduction 72 164 120 16 74 L MCA CVA
PWA22 F 87 16 130 Anomic 97 190 156 29 94 L MCA with BG involvement
PWA23 F 68 12 28 Transcortical motor 82 110 89 17 35 L MCA CVA
PWA24 M 68 17 21 Anomic 95 192 155 28 97 L MCA CVA
PWA25 M 58 16 9 Anomic 97 160 147 25 77
PWA26 M 49 12 162 Broca’s 58 163 98 19 74 L MCA CVA
PWA27 F 66 18 42 Broca’s 31 101 40 3 39 L MCA with BG involvement
PWA28 F 83 16 39 Anomic 93 172 145 22 79 L MCA CVA
PWA29 F 66 18 84 Conduction 70 184 120 20 88 L MCA CVA
PWA30 M 70 12 76 Global 10 13 30 3 17 L MCA with BG involvement
PWA31 F 64 18 18 Anomic 68 146 102 14 71
PWA32 F 49 14 31 Broca’s 21 177 47 25 88 L MCA CVA
PWA33 F 66 34 Anomic/conduction 78 196 136 27 98 L MCA CVA
PWA34 F 55 28 Anomic 83 77 156 21 57 L MCA CVA
PWA35 F 29 18 75 Anomic 93 203 159 30 95 L MCA CVA
PWA36 M 56 16 13 Anomic 87 196 150 26 96 L MCA CVA
PWA37 M 60 19 27 Anomic 83 190 132 25 91 L MCA CVA
PWA38 M 44 12 12 Anomic 96 196 151 27 96 L MCA with BG involvement
PWA39 M 66 16 123 Anomic 86
PWA40 M 65 19 24 Anomic 98 187 163 22 81 L MCA CVA
PWA41 F 38 16 53 Anomic 78 173 139 22 77 L MCA/ACA CVA
PWA42 M 65 16 120 Conduction/Wernicke’s 23 197 93 28 101
PWA43 M 53 16 107 Conduction/Wernicke’s 48 178 93 24 92 L MCA/ACA CVA
PWA44 M 69 14 17 Anomic 100 201 149 30 91 L MCA CVA
PWA45 F 77 16 94 Anomic 98 206 183 29 86 L MCA CVA
PWA46 M 69 19 109 Anomic 80 137 115 18 65

(table continues)
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Table 1 (Continued).

Participant Gender
Age

(years)
Education
(years) MPO Aphasia type AQ Attn Mem Exec VS Lesion information

PWA47 F 53 12 25 Wernicke’s 41 144 74 17 64 L MCA with BG involvement
PWA48 M 59 18 110 Conduction 78 194 156 40 92 L MCA CVA
PWA49 M 70 21 28 Conduction/Wernicke’s 34 167 66 23 91 L MCA CVA
PWA50 F 60 16 70 Anomic 99 209 175 32 101 L MCA CVA
PWA51 F 34 14 6 Wernicke’s 25 184 66 18 92 L MCA CVA
PWA52 M 79 7 Broca’s 28 184 42 22 84 L MCA CVA
PWA53 F 50 18 24 Anomic 94 210 181 31 100 L MCA CVA

Note. MPO = months post onset of cerebrovascular accident (CVA). Composite scores of attention (Attn), memory (Mem), executive functions (Exec), and visuospatial skills (VS) as
obtained with the Cognitive Linguistic Quick Test—as well aphasia quotients (AQs) as measured by the Western Aphasia Battery—are reflected. For participants 18–69 years of age,
scores on the Cognitive Linguistic Quick Test are classified by severity as follows: Attn: within normal limits (WNL) = 180–215, mild = 125–179, moderate = 50–124, severe = 0–49;
Mem: WNL = 155–185, mild = 141–154, moderate = 110–140, severe = 0–109; Exec: WNL = 24–40, mild = 20–23, moderate = 16–19, severe = 0–15; VS: WNL = 82–105, mild = 52–81,
moderate = 42–51, severe = 0–41. Under lesion information, we indicate those PWA with confirmed basal ganglia (BG) involvement. M = male; F = female; MCA = middle cerebral
artery; ACA = anterior cerebral artery; PCA = posterior cerebral artery.
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Table 2. Characteristics of control (Cn) participants.

Cn participant Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 Cn10 Cn11 Cn12

Gender F M F M M F F F M F F F
Age (years) 57 61 33 55 70 65 57 58 69 61 60 73
Education (years) 16 21 19 18 16 12 16 18 16 16 16 16
were matched to the average years of education of the
PWA (M = 16.7, SD = 2.2). Control participants had no
known history of neurological disease or developmental dis-
abilities. One control participant was left-handed. Partici-
pants were recruited from the Boston area and were tested
at the Sargent College of Rehabilitation Sciences.

Learning Task
Stimuli for the learning task were two sets of 1,024

fictional animals, which were introduced by Reed, Squire,
Patalano, Smith, and Jonides (1999); updated by Zeithamova,
Maddox, and Schnyer (2008); and utilized in Vallila-Rohter
and Kiran’s (2013) study. Animals varied on 10 binary di-
mensions: color, body shape, body pattern, head direction,
ears, feet, leg length, neck length, nose, and tail (see Figure 1).
One animal from each set was selected as Prototype A of
that set, and the animal that differed from that prototype
by all 10 features became Prototype B for each set. Two
categories were established in each set. These categories in-
cluded all animals that shared at least 60% of their features
with the prototype within that category, thus including
animals sharing 90%, 80%, 70%, and 60% of their features,
respectively, with category prototypes. Note that because
of the binary nature of features, these animals shared 10%,
20%, 30%, and 40% of their features, respectively, with the
prototypical animal of the opposite category. Each category
had an internal structure that was based on the percentage
of feature overlap with each of the two prototypes.

Animals are described by their distance from Proto-
type A, animals at Distance 1 being animals that differ
from the prototype by one feature (90% overlap), animals
at Distance 2 differing from Prototype A by two features
(80% overlap), until reaching a distance of 10: Prototype B
(see Figure 1). Categorization rates were expected to match
the percentage of feature overlap with each prototype. Thus,
the percentage of “B” responses increases from 0% to
100% with increasing distance from Prototype A.

The category learning task was computer based and
composed of two phases. A 10-min training phase was im-
mediately followed by a 10-min testing phase (see Figure 2).
The experiment was programmed using E-Prime 2.0 (Schneider
& Zuccolotto, 2002). In training, animals were presented
one at a time on a computer screen, and participants were
instructed to guess to which of two categories each animal
belonged. Responses were indicated with one of two button
presses: “1” or “2” corresponding to Categories A and B.
Participants were given 4,000 ms to make a response. After
a response was made, participants received feedback in the
form of a check mark or an “x” for 3,000 ms, indicating
1200 Journal of Speech, Language, and Hearing Research • Vol. 58 •
whether their response was correct or incorrect. Participants
were told that they would initially be guessing at random
but that eventually they would start to recognize animals as
belonging to one category or to another. Accuracy percent-
age was reflected on a small counter in the upper right hand
corner of the screen. Participants were instructed to attend
to all features.

During the training phase, participants completed
60 learning trials comprising three repetitions of 20 animals
within each category. Prototypical animals were never
shown in training. Each feature appeared 30 times. Fea-
tures of Prototypical Animal A were seen on animals cate-
gorized in Category A for 70%–80% of trials (21–24 times).
Features of the opposite prototype, Prototypical Animal B,
were only seen on animals categorized as Category A
members on 20%–30% of trials (6–9 times).

Following training, participants completed 67 classi-
fication trials in a testing phase with no feedback. Partici-
pants were given 4,000 ms to categorize each animal. In the
testing phase, participants were tested on 16 animals seen
in training and 45 novel category members and prototypes.
Testing included 56 animals at Distances 1–4 and Distances
6–9. Five midline animals (Distance 5) were presented. For
the purposes of analyses, these were coded with a correct
“A” response and were expected to lead to an average per-
centage “B” response (%BResp) around 50%.

Stimulus sets (Set 1 and Set 2) were counterbalanced
across participants. Data were collected on reaction time and
accuracy; however, only the accuracy of responses was ana-
lyzed for the current article. Strategy analyses were con-
ducted over training and testing phases allowing for an
examination of the strategy progression from training to
testing. Note that in the testing phase, participants no longer
received feedback regarding the accuracy of their responses.

Data Analyses
Accuracy Rates and Learning Score

Each participant was first assigned a score of learn-
ing. To achieve this, all individual participant results were
analyzed by the percentage of B responses as a function
of distance from Prototype A. Scores at each distance were
first converted into a %BResp score. As control partici-
pants have a tendency to probability match during this type
of learning (see Knowlton et al., 1994), %BResp scores
were expected to incrementally increase by a factor of 10%
from 0% to 100% (from Distance 0 to Distance 10). Thus,
learning corresponds to a linearly increasing %BResp with
a slope of 10. Chance responses would produce a linear
slope of zero (%BResp = 50% at each distance). Learning
1195–1209 • August 2015



Figure 1. Presentation of features (Dimensions A and B) for Stimulus Sets 1 and 2. Animal pictures are a representative
sample of stimuli at Distances 1–10 from Prototype A that differ from Prototypical Animal A by 1–10 features. Distance
from Prototype A is identified as well as the percentage of feature overlap with Prototype B.
scores from control participants included in this study were
calculated in this manner and have been previously reported
in Vallila-Rohter and Kiran’s (2013) study.

An independent samples t test confirmed that there
was no significant difference in learning scores achieved on
Stimulus Set 1 and Stimulus Set 2, t(63) = −1.22, p = .23;
therefore, data across both stimulus sets were collapsed for
all subsequent analyses. Once learning scores were computed,
we conducted a one-way analysis of variance (ANOVA) on
slope scores of control participants and PWA to examine
between-groups differences.

Strategy Analysis
Although scores of learning were determined by ex-

amining accuracy rates as a function of distance, strategy
analyses examine categorization rates as a function of each
individual feature value. Animals had 10 features, each with
a binary distribution (i.e., body pattern: spots or stripes);
therefore, we examined the %BResp made for each binary
option (%BResp when the animal had the feature spots;
%BResp when the animal had the feature stripes).

Next, we set up multiple model strategies adapted to
our task and stimuli, on the basis of those models presented
by Gluck et al. (2002) and Meeter et al. (2006). To set up
models, each feature was coded with a value ranging from
1 to 10, and each binary distribution was coded with a let-
ter A or B (see Figure 1 and Table 3). Neck length, for exam-
ple, was Feature 1, with a short neck coded as Distribution A,
and long neck coded as Distribution B. These correspond
to each feature value of Prototypical Animals A and B. The
first possible strategy, the OMC strategy, models responses
that match the actual “B” reinforcement rate received in
training for each dimension of each feature. For the first
feature in our experimental set-up, the proportion of correct
“B” responses for animals with long necks in training was
0.7. Therefore, the corresponding proportion of correct “B”
responses for animals with short necks was 0.3. These pro-
portions are indicated under “OMC” in Table 3. For each
feature dimension, the OMC strategy models responses in
the testing phase that match the reinforcement rate ob-
served in training. Actual categorization rates that match
optimal categorization for multiple features will produce a
best fit to the OMC strategy. This strategy is expected to
lead to successful scores of learning. Multi-cue strategies
are thought to be complex and difficult to verbalize, and
they require attending to multiple pattern dimensions at
once (Ashby & Ell, 2001). Implementing such a strategy re-
quires attending to, tracking feedback of, and acquiring
cue-outcome relationships between multiple pattern dimen-
sions at once.
Vallila-Rohter & Kiran: Strategy Use in Aphasia 1201



Figure 2. Representation of experimental training and testing
phases.
Next, we established 20 SF strategies, one for each
feature dimension.1 These strategies model behaviors in
which participants attend selectively to one particular fea-
ture, consistently responding “B” to one feature dimension
and “A” to the alternate feature dimension. For example,
an individual attending only to the first feature of Stimulus
Set 2, body shape, would produce close to a 0% B response
to round bodies and close to a 100% B response to square
bodies. To account for error, consistent B responses to one
feature dimension were set as variable p with a value of
0.95. Response rates to the opposite feature dimension
were modeled as 1 − p (see Meeter et al., 2006). In our SF
models, response patterns to all other features are random,
corresponding to a proportion of B responses of 0.5 (see
Table 3). Successful learning should be possible using SF
strategies if participants attend to a particular stimulus di-
mension and accurately track feedback. These strategies are
often described as suboptimal because outcome judgments
are based on the value of a single card (Shohamy, Myers,
Onlaor, et al., 2004). SF strategies are simple strategies that
require feedback tracking and integration but without the
additional working memory or attentional loads of inte-
grating and tracking feedback across multiple features at
once.
1SF strategies are based on one-cue strategies modeled in prior studies
and described in the introduction, but these strategies are renamed
because they reflect an adaptation specific to our category learning
task.
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Finally, we included a random strategy as proposed
by Meeter et al. (2006). A random strategy is modeled as
a 50% B response rate to each feature dimension and, as
noted previously, can represent random behavior, no strat-
egy, or a multitude of strategies that deviate from those
already modeled (OMC and SF in our study). Including a
random model in analyses helps reduce the number of
falsely identified SF and multi-cue strategy fits (see Meeter
et al., 2006). Under stringent error criteria (p), such as
0.95, the range of responses fit by a random strategy is
wide. In the current study, we label this range and strategy
fit as RP. We model this strategy to improve our iden-
tification of SF and multi-cue strategy fits, but we do not
expect many of our participants to produce results fitting
an RP.

Finally, we adapted the quantitative methods pro-
posed by Gluck et al. (2002) to quantify the fit of each par-
ticipant’s responses with each of our models. We used the
following calculation to assign each participant with a fit
score for each model:

Score for Model M ¼
P

F #B expectedF ;M�#B actualF
� �2

P
F #BpresentationsFð Þ2 ;

where F indicates feature (10 features, each with a binary
value); B_expectedF,M indicates the number of times that
a B response would be expected for each feature under
Model M; #B_actualF indicates the number of B responses
made by the participant for each feature; and #BpresentationsF
indicates the number of times that the feature B appeared
in testing. In this manner, we scored each participant’s re-
sponse fit against ideal data expected if participants used
an OMC strategy, the 20 SF strategies, or an RP. Each par-
ticipant was assigned with a fit score between 0 and 1 for
each strategy model. The score closest to 0 represented the
closest match with ideal model data. Once strategy scores
were assigned, an ANOVA was used to examine the rela-
tionship between slope scores of learning and strategy use.
We used chi-square analyses to examine and compare the
distribution of RP, SF, and OMC users in each group and
across groups.

Results
Learning Results and Strategy Use
Learning Scores

We first conducted an ANOVA on scores of learning
to examine whether differences arose between overall slope
scores of learning between control participants and PWA.
As expected, slope scores of learning were significantly
different between PWA and control participants without
aphasia, F(1, 63) = 5.10, p = .03. The mean slope score of
learning for PWA was 3.2 (SD = 5.2). The mean slope score
of learning for the control group was 6.8 (SD = 4.1), closer
to ideal learning slopes of +10. See online supplemental
materials, Supplemental Table 2, for slope scores for all
participants.
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Table 3. Set-up of model strategies.

Feature

% B
response
rate in
training OMC RP SF-1A SF-1B SF-2A SF-2B SF-3A SF-3B SF-4A SF-4B SF-5A SF-5B SF-6A SF-6B SF-7A SF-7B SF-8A SF-8B SF-9A SF-9B SF-10A SF-10B

1 A 30 0.3 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 70 0.7 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2 A 20 0.2 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80 0.8 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

3 A 30 0.3 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 70 0.7 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

4 A 20 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

5 A 20 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

6 A 20 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

7 A 30 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5 0.5 0.5
B 70 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5 0.5 0.5

8 A 20 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5 0.5 0.5
B 80 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5 0.5 0.5

9 A 30 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p 0.5 0.5
B 70 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p 0.5 0.5

10 A 30 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 p 1 − p
B 70 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 − p p

Note. Parameter p was set to 0.95. OMC = optimal multi-cue; RP = random pattern; SF = single feature.
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Strategy Analyses
Next, we conducted two sets of strategy analyses for

each participant, one over the training phase and a second
over the testing phase of categorization. Strategy analy-
ses over data from control participants and PWA demon-
strated that all results from training and testing phases
could be fit with modeled strategies with a tolerance level
of 0.15, with the exception of testing phase data for one pa-
tient participant, PWA20. Data from this participant were
dropped from subsequent analyses. See online supplemental
materials, Supplemental Table 2, for model fit scores for all
participants. We performed chi-square analyses to deter-
mine whether any differences arose between PWA and con-
trol participants in the types of strategies utilized over the
two experimental phases. Strategy use was significantly dif-
ferent across groups in the training phase of the experiment,
c2(2) = 5.87, p = .05. A larger proportion of PWA used
RP strategies in training than did control participants (0.67
and 0.50, respectively). Control participants demonstrated
a larger proportion of OMC strategy use than PWA (0.33
and 0.08, respectively; see Figure 3).

Strategy use was also significantly different across
groups in testing phases, c2(2) = 6.08, p = .05. By testing
phases, the proportion of RP strategy use for control partic-
ipants was only 0.08 compared with 0.40 for PWA. Control
participants showed a higher proportion of OMC strategy
use than did PWA (0.33 and 0.11, respectively). Thus, PWA
were observed to have a relatively high use of RP strategies
in training and testing phases, which was not observed in
control participants. Few PWA developed complex OMC
strategies.
Figure 3. Significant differences arise in the strategy use of control participa
PWA have a higher reliance on random patterns (RPs) in both phases. Whe
and optimal multi-cue (OMC) strategies in testing, PWA continue to show f
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Four control participants rapidly developed SF or
OMC strategies in training phases that they maintained
into testing phases. Six control participants were observed
to progress from either no strategy in training (RP) to an
SF or OMC strategy in testing. Among our PWA, 13 rap-
idly developed SF or OMC strategies in training that
they maintained or optimized in testing phases. Twenty-
one PWA (40%; PWA1–PWA22, PWA20 was dropped
from these analyses) were never observed to develop a
strategy (see online supplemental materials, Supplemental
Table 2).
Learning as a Function of Strategy Use
We were next interested in examining the relationship

between strategy use and success with learning. To do this,
we first conducted an ANOVA to compare slope scores
of learning following RP, SF, and OMC strategy use in train-
ing. Results were significant, F(2, 61) = 10.84, p < .001, in-
dicating that there was a difference between slope scores for
the three types of strategy use. Tukey’s post hoc analyses
revealed that the slope scores of learning were significantly
different between participants using RP and SF strategies
in training (p = .001; RP slope scores: M = 1.9, SD = 5.1;
SF slope scores: M = 7.2, SD = 3.2 ) as well as between par-
ticipants using RP and OMC strategies in training (p = .004;
OMC slope scores: M = 7.8, SD = 2.4). Slope scores
following RP strategy use were significantly lower in both
cases. Slope scores following SF and OMC strategy use in
training were not significantly different (p = .95). Thus, those
participants who were able to rapidly engage SF or OMC
nts and participants with aphasia (PWA) in training and testing phases.
reas control participants shift to a high reliance on single feature (SF)
requent RP use in testing. Few PWA develop OMC strategies.
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Figure 4. Scatter plot of executive function scores and learning
slope separated by strategy use in training. Note that participants
with aphasia with high scores of learning near +10 and low scores
of learning near zero have a wide range of executive function scores.
A small cluster of individuals with the lowest executive function
scores, however, all fall into the random pattern (RP) strategy group.
SF = single feature; OMC = optimal multi-cue.
strategies in training produced higher overall learning scores
in testing phases.

Examining the relationship between learning and
strategy use in testing, a one-way ANOVA again revealed
significant differences, F(2, 61) = 21.11, p < .001. Tukey’s
post hoc analyses again revealed that slope scores of learning
were significantly different between participants using RP
and SF strategies (p < .001; RP slope scores: M = −0.2,
SD = 2.2; SF slope scores: M = 5.1, SD = 5.3) and between
participants using RP and OMC strategies in testing (p < .001;
OMC slope scores: M = 9.2, SD = 1.4). Lowest slope
scores were again achieved under instances of RP strategy
use. The difference in slope between SF and OMC strategy
use was significant (p = .02), with OMC strategy use lead-
ing to significantly higher slope scores. Thus, to produce
the highest categorization scores in testing, participants
had to apply OMC strategies. SF strategies led to the next
highest categorization scores. Final slope scores of learning
were lowest for those individuals who did not develop strat-
egies in training or testing, producing data that best fit
an RP.

Examining the Relationship Between Patient
Characteristics, Overall Learning, and Strategy Use

To examine the relationship between learning, strategy
use, and cognitive–linguistic factors, we conducted two sets
of partial correlations between slope and AQ, attention,
executive function, memory, and visuospatial skills—one
controlling for strategy used in training, and one controlling
for strategy used in testing. The partial correlation between
slope score and executive function, controlling for strategy
group in training, was significant, r(48) = .40, p < .01, dem-
onstrating that patients with higher slopes of learning also
have higher scores of executive function when controlling
for strategy type in training. Visual inspection of the data
(see Figure 4) reveals a relatively broad range of executive
function scores across participants, with ideal learning
slopes close to +10. What is most notable is a small cluster
of PWA with the lowest executive function scores on the
CLQT (<18) who all fall into the RP strategy group. The
partial correlation between slope score and visuospatial
skills, controlling for strategy in training, was also signifi-
cant, r(48) = .34, p = .02. Overall, those PWA with the
greatest impairment in visuospatial skills (lower scores on
the CLQT) produced poor scores of learning and imple-
mented RP or SF strategies. Many patients with only mild
or no impairment in visuospatial skills, however, produced
similarly low scores of learning and utilized RP and SF
strategies. The remaining partial correlations between slope
score and AQ, attention, and memory (controlling for
strategy type in training) were nonsignificant: AQ, r(47) =
−.17, p = .25; attention, r(47) = .23, p = .12; and memory,
r(47) = −.02, p = .87.

Similarly, the partial correlation between slope score
and executive function, controlling for strategy group in
testing, was significant, r(47) = .33, p = .02. None of the re-
maining partial correlations controlling for strategy group
in testing were significant: AQ, r(47) = −.06, p = .69; visuo-
spatial skills, r(47) = .24, p = .09; attention, r(47) = .16,
p = .29; and memory, r(47) = .05, p = .71.

On the basis of the lesion information obtained for
each patient from medical records, we were able to identify
those patients with confirmed basal ganglia involvement.
Because basal ganglia structures have been implicated in
successful probabilistic learning, we were interested in de-
termining whether PWA who never developed strategies
were those with lesions involving the basal ganglia. Five of
the 21 PWA who never developed strategies (who instead
used RPs in training and in testing) had lesions involving
the basal ganglia. Four PWA with basal ganglia involve-
ment developed SF or OMC strategies by testing.

Discussion
In this study, we aimed to explore strategy use in

PWA compared with control participants as they completed
a feedback-based probabilistic category learning task. As ex-
pected, we found differences in the overall learning success
of PWA compared with control participants. Similarly, dif-
ferences arose between groups in the strategies implemented
in each phase of the experiment: training and testing.

As predicted, PWA had significantly lower categori-
zation scores than control participants without aphasia.
This is consistent with prior research that demonstrated
lower rates of successful category learning in PWA compared
with control participants (Vallila-Rohter & Kiran, 2013).
Consistent with prior studies, comparisons between strategy
use and learning success showed that the development of
Vallila-Rohter & Kiran: Strategy Use in Aphasia 1205



either SF or OMC strategies was critical for successful cate-
gorization in testing (Gluck et al., 2002; Hopkins, Myers,
Shohamy, Grossman, & Gluck, 2004; Knowlton et al.,
1994; Rustemeier, Schwabe, & Bellebaum, 2013; Shohamy,
Myers, Grossman, et al., 2004; Shohamy, Myers, Onlaor,
et al., 2004). Successful learning following OMC strategies
is not surprising, as this reflects that through the course of
training, participants learned to produce responses that
closely matched the actual reinforcement rate of multiple
animal features. OMC strategy implementation requires in-
dividuals to attend to multiple features at once, accurately
tracking and accruing feedback information through the
course of learning. To obtain successful categorization rates
using SF strategies, participants must identify a feature with
a high reinforcement rate in training and implement this
strategy in testing phases.

In contrast to OMC and SF strategies that led to
successful learning, no participant implementing an RP in
testing had good categorization rates. Recall that the RP
strategy models behavior closest to chance performance and
may correspond to RPs or to frequent strategy switches.
Current results confirm that the nature of the task required
participants to develop strategies on the basis of accrued
feedback to succeed with learning. Hypothesis testing,
tracking, and monitoring appear to be critical to learning,
whether they were conscious or unconscious. Furthermore,
participants had to develop a strategy resistant to instances
of negative feedback. Because participants are unlikely to
make responses that are completely random, we hypothesize
that many participants with results that fit an RP model
modified their responses on the basis of prior stimuli on
each trial. Constant strategy switches would produce results
with insufficient consistency to match modeled strategies or
to produce scores of successful categorization.

Strategy use was significantly different across groups,
with control participants more consistently and more rapidly
developing suboptimal and optimal SF and OMC strategies
than PWA. Half of our control participants were able to
rapidly develop strategies in testing that they either main-
tained or optimized by testing phases. The remaining control
participants took longer to develop strategies, eventually
implementing SF or OMC strategies by testing phases. Only
one control participant showed an inferior progression from
an SF strategy to no strategy.

For PWA, three major profiles exist: OMC strategy
users, SF strategy users, and RP strategy users (see Figure 5).
First, 11.5% of PWA, a small subset, were able to implement
OMC strategies in testing phases and to successfully catego-
rize animals. Although prior studies in patients with amnesia
and with PD did not see OMC strategy use (Hopkins et al.,
2004; Meeter, Radics, Myers, Gluck, & Hopkins, 2008;
Shohamy, Myers, Kalanithi, & Gluck, 2008; Shohamy,
Myers, Onlaor, et al., 2004), a small group of PWA evidenced
preserved abilities to rapidly develop complex, multi-
dimensional strategies. Results demonstrate that many PWA
likely have neural networks capable of supporting the de-
velopment of complex strategies to engage in learning of
this sort.
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Second, 46.2% of PWA implemented SF strategies in
testing. On the basis of previous research that showed a
gradual progression from singleton cue to multi-cue strate-
gies in learning, we predict that PWA in this subgroup
might have progressed to OMC strategies had they com-
pleted additional trials. Alternatively, PWA relying on SF
strategies may have a limited ability to focus on multiple
features at once. This could be the case for participants
such as PWA41, PWA42, PWA43, and PWA44 (see online
supplemental materials, Supplemental Table 2), who rap-
idly developed SF strategies, maintained them into testing
phases, and produced learning scores close to modeled ideal
learning slopes of +10. These PWA were able to develop
and maintain SF strategies as well as resist distractors
(other features). They were, however, unable to optimize
responses based on multiple feature dimensions. Finally,
some SF strategy users may have impairments of feedback
tracking at the hypothesis testing level. This may be the
case for participants who implemented SF strategies in
testing but produced scores of learning that were close to
chance performance (i.e., PWA26, PWA31, and PWA37;
see online supplemental materials, Supplemental Table 2).
These PWA focused on an SF but not one with an ideal re-
inforcement rate. Such PWA demonstrate basic skills of
implementing a strategy and selectively attending to fea-
tures yet appear impaired at the level of feedback response
tracking.

Finally, and surprisingly, a third subset—42.3% of
PWA tested—never developed strategies and continued to
produce an RP of responses through both training and
testing phases. This behavior is suggestive of the weakest
strategy development systems and produced poor overall
category learning in all cases. We hypothesize that PWA in
this subgroup have cognitive–linguistic barriers that pre-
vented them from developing strategies. They did not learn
to optimize responses or to focus on an SF. We had not ex-
pected to see such a high occurrence of RP strategy use in
PWA. Recall, however, that participant strategies had to be
based on a mental construct robust enough to withstand in-
stances of negative feedback. Because of the probabilistic
structure of categories in this task, feedback provided on in-
dividual trials was not always reliable. Instead, successful
performance depended on information accrued across
multiple instances. Thus, participants who constantly modi-
fied responses on the basis of immediate antecedents alone
did not develop effective strategies. Strategies had to be
developed on the basis of responses and feedback accrued
over multiple trials.

Meeter et al. (2006) observed such patterns of ran-
dom responses in individuals with amnesia with dense
memory impairments, proposing that deficits in recall of
attempted strategies and resulting feedback likely accounted
for the observed lack of strategy implementation. Shohamy,
Myers, Onlaor, et al. (2004) also observed impaired strategy
development in individuals with PD, and they posited that
integration, working memory, and strategy switching defi-
cits were to blame. Similar deficits may be present in a
subset of PWA. A subset of PWA may also require longer
1195–1209 • August 2015



Figure 5. Schema representing strategy progressing from training to testing in control participants (left panel) and
participants with aphasia (PWA; right panel). Solid lines indicate strategy progressions that were observed to lead to
successful categorization rates. Dotted lines indicate strategy patterns that did not lead to successful categorization.
RP = random pattern; SF = single feature; OMC = optimal multi-cue.
processing times than those included in the present study to
develop hypotheses and to track feedback.

We did observe a significant correlation between ex-
ecutive function scores on the CLQT and learning scores
when controlling for strategy group. A relationship between
learning score and executive function measures had not
been seen in previous studies (Vallila-Rohter & Kiran, 2013)
but is consistent with the proposal that feedback-based
learning requires hypothesis generation, hypothesis testing,
and feedback tracking—skills likely to depend on executive
functioning abilities. PWA with the lowest scores of execu-
tive function were not able to develop strategies in training
or in testing. Many PWA who did not develop strategies,
however, had a broad range of executive function scores.
Thus, cognitive–linguistic barriers preventing strategy de-
velopment were not identified using the limited battery of
assessments examined here. This could be because our cog-
nitive battery was limited. It may also indicate that learning
and strategy development represent yet another cognitive
construct not yet characterized in the literature. As ex-
pected, severity of aphasia did not predict success with
learning, providing additional evidence that language and
learning networks may differentially be affected in aphasia.
This is clinically important, as those patients with the
most high-functioning aphasias may not be equipped with
robust learning systems. In contrast, some patients with
severe degrees of aphasia likely have strong neural net-
works to support learning.

Many aphasia therapies work toward retraining lan-
guage through manipulations of auditory and visual stim-
uli, feedback, and modeling. Currently, we are limited in
our understanding of how patients approach such tasks.
Are individuals actively integrating feedback and construct-
ing hypotheses related to instruction and cueing? Are pa-
tients able to devise strategies to carry over what is learned
in therapy into real-world communicative scenarios? These
questions, all of which are highly relevant to therapy, re-
quire gaining a better understanding of the ways in which
PWA process information while engaged in therapy tasks and
merit further exploration. Although the current study exam-
ined abstract pattern learning—a nontherapy task in a non-
therapy environment—individuals who struggled to develop
strategies on our task might also have difficulty attending
to multiple modalities and integrating feedback in therapy.

Current results highlight the importance of continu-
ing to explore nonlinguistic cognitive factors in aphasia.
Here, we replicated the finding of impaired nonlinguistic
category learning in a subgroup of PWA. Furthermore, we
established that PWA use a variety of strategies when com-
pleting these tasks. Surprisingly, a large subset of individ-
uals produced patterns of random responses throughout
training and testing, suggestive of impaired strategy devel-
opment or feedback processing abilities that were not
directly reflected in cognitive assessments. Though our bat-
tery of cognitive assessments was limited, we hypothesize
that learning is a unique metric important to characterize in
aphasia. Learning requires dynamic information accrual
and integration of feedback—skills not fully captured by
static tests of impairment. The most productive classifica-
tions of aphasia that may finally lead to individualized
therapy will include measures of learning and strategy de-
velopment ability as well as measures of impairment.
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